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This supplementary material provides additional qualitative results and details
on our method and experiments. First we present random results similar to the
ones presented in Figure 3 and 4 of the paper, both in the supervised and the
unsupervised setting. Second, we detail the Gaussian pooling of the encoder
features and the spatial transformation of the sprites onto the target canvas.
Third, we detail the procedure of extracting exemplars and comparing with SSIM
on MFGR, and show examples of exemplar diversity. Fourth, we present the
algorithm and the methodology we have used to associate sprites to characters
for our quantitative evaluation in the unsupervised setting. Finally, we detail the
way we adapted MarioNette [7] and DTI-Sprites [5] to construct unsupervised
baselines for our task.

1 Additional results

We provide further randomly drawn examples of reconstructions both for Google1000
Figure 1 and for the Copiale cipher Figure 2 from their respective test sets for
both the supervised and the unsupervised version of our method. In the begin-
ning of each figure we locate the sprites learned by each method and to which
unique colors have been assigned. Below it follow triplets of ground-truth images,
reconstructed images and colored segmentations (with the same colors as the
ones displayed in the beginning) for a set of randomly drawn examples for each
dataset. Note that really similar characters will be assigned to different colors if
they are reconstructed by different sprites.

2 Method details

Gaussian Pooling In order to compress (channel-wise) the two dimensional
H/4 x W/4 output of the encoder to a one dimensional W/i6 vector, we use a
Gaussian pooling. Concretely, we perform the convolution of the output with a
Gaussian kernel & of size H/4 x 4, with no padding and with a horizontal stride
of 4. The kernel « is defined V(¢, j) € [1, #/4] x [1, 4] as &[i, j] = &[d, j]/ 324, Rli, 5],
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(a) Supervised (b) Unsupervised

Fig. 1: Random results on Google1000 [8] with and without supervision.
The top of the figure shows the sprites learned by our method, colored as in the
semantic segmentation. Then, for each input line (top) we show the reconstruction
provided by our method (middle) and the corresponding semantic segmentation
bottom). This figure extends Figure 3 of our paper.
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Fig. 2: Random results on the Copiale cipher [4]. The layout is the same as Figure

1, extending Figure 4 of our paper.
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where:

il = exp |3 (G- 1197 + (= 2)) )

Sprite Positioning We parametrize the scale and translation transformations
by a scaling parameter ¢ and a 2D translation vector 7 € R?. We define the
affine transformation matrix M from the sprite space to the image space, using
image coordinate systems centered at the middle of each feature’s receptive field
and a sprite coordinate system centered at the middle of the sprite:

HlLon

v-g i) @
where h is the height of the (square) sprites, H is the height of the line. We
obtain the values for isotropic scaling o and 2D translation 7 as the output of the
transformation network ty (three out of six outputs, the three other being the
color of the sprite) to which we apply different non-linearities. For the translation
T, the two corresponding outputs of the linear layer are clamped between -1 and
1. For the scale o, we apply a non-linearity * — exp(z) to the corresponding
output of the linear layer.

3 Extracting and Comparing Exemplars on MFGR.

To extract exemplars from MFGR [6], we sort text lines for each character
according to its descending amount of appearance and mask & extract the first
that looks visually clear. Note, however, that as mentioned in the main paper,
for several fonts and certain characters there a more than one exemplars that
are needed to visually summarize them. We support this observation with visual
examples in Figure 3. To remove each exemplar from its background, we use GHT
[1] to binarize it and then multiply it with its binary mask. Then, we normalize
the mask and resize & center it with a constant aspect ratio on a canvas of 48 x
48 with a margin of 10 pixels. In order to compute SSIM, we also threshold the
ground truth at an intensity of 0.4 and resize & center it in the same way. To
improve the comparison, we also remove unwanted noise by extracting the main
connected component in both the sprite and the g.t. exemplar using [2,3].

4 Unsupervised Evaluation

A simple way to quantify the performance of the unsupervised version of our
method is to assign sprites to characters and use this association to perform
OCR/HTR. Note that in the supervised case this assignment is already known
since we associate a sprite to each character at the beginning of training. In
practical scenarios, in the unsupervised setting, the association between the
sprites and a characters could be performed by a user. Instead, for quantitative
evaluation, we want to perform this association automatically, and using only
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Fig.3: Character Diversity in MFGR [6]. Characters may have both big
(a), (b) or slight (c¢) distinct visual variation. In Gotico Antiqua, this happens
to multiple characters with the extreme case of E, which appears in at least 3
visually distinct forms (d).

annotated text lines. Since we have to handle sequences of variable lengths,
since our predictions include errors, and since the mapping between sprites
and characters is not necessarily bijective, obtaining an optimal assignment is
challenging. In this section, we propose a simple algorithm to find an approximate
solution.

Formalization. We assume that each sprite corresponds to a character (i.e. we
do not consider cases such as a sprite corresponding to only part of a character
or a sprite including two characters). Our problem can thus be formulated as the
optimization of an assignment matrix A € {0,1}5*Y where K is the number of
sprites and N is the size of the alphabet, and where for each sprite s there is a
unique character ¢ for which A, . = 1, when sprite s corresponds to character
¢, and zero otherwise. We relax the problem by optimizing instead a matrix
A€o, 1]%>N which we parametrize as the column-wise softmax of a matrix
A, ie. A, = softmax(A,.). We will compute the final assignment matrix A
by associating to each sprite s the character ¢ for which As . is maximal. We



6 I. Siglidis et al.

Algorithm 1 Learning Sprite Alphabet Correspondences

Input: Y > g.t. (characters), pred. (sprites) pairs
Output: A > optimal assignment
Initialization: A ~ /(0,1)%*¥ > assignment matrix

for (y, ) €Y do
Find the optimal alignment between y and § given A
Perform a gradient step to minimize L (y, §, A)

return argmax(A4, axis = 1)

assume that we are given as input a collection Y, where each element is a pair of
a ground truth sequence of characters y and a predicted sequence of sprites g.

Algorithm overview. We propose an iterative mapping optimization scheme,
outlined in Algorithm 1. Given a pair (y,¢) € Y and an assignment matrix A we
define a matching loss Las(y, g, A). Our algorithm, iterates over pairs (y,9) € Y
and for each pair, it computes the loss as a function of A and then performs
a gradient step on A. After the optimization has converged, we extract the
mapping by applying an argmax operator to A in the dimension corresponding
to the alphabet. As a final refinement step, we ignore sprites that work as visual
wild-cards, i.e., sprites that only improve reconstruction without corresponding
to any character. To do so, we sort the sprites by increasing usage frequency,
iterate over each sprite and discard it if removing it improves the character error
rate in the training set.

Matching Loss. Given a matrix A, associated to a matrix A, we define a cost
matrix C for associating sprites and characters as C' =1 — A and a cost Cskip
for skipping a character or a sprite when aligning two sequences. The matching
loss Las(y, 3, A) is defined as a minimum cost of alignment between y and .

We define the cost of a given alignment between a character sequence and a
sprite sequence as the sum of the cost of all the sprites to character associations
in the alignment added to the sum of the cost Cyyip, for all the characters and
sprites skipped in the alignment. Intuitively, as illustrated on Figure 4, one can
see an alignment between a sprite and a character sequence as path in a 2D
grid, where the two dimensions of the grid are associated to the sequence of
sprites ¢ and characters y extended by start symbols which we use to initialize
the association between the two sequences. Diagonal displacements in the grid
are interpreted as an association between sprites and characters, and horizontal
or vertical displacements as skipping sprites or characters.

One can thus compute the cost of an alignment by moving along the associated
path from the top left corner of the grid to the bottom right which can be
decomposed to a sequence of two types of steps: (1) a diagonal step to the
bottom right direction toward a cell associated to sprite s and character ¢, that
corresponds to matching the sprite and character and is associated to a cost
Cs.c, and; (2) a horizontal or vertical step, that corresponds to skipping either an
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Algorithm 2 Ly (y, 9, A) Matching Loss Computation
Input: y, 3, A > g.t., pred., assignment matrix
Constants: Cyip = 1 > skipping cost
Output: The computed Matqhing Loss
C =1 — softmax(A), D = col¥/*7l > initialization

for i,5 € {0, ..., |y|} x {0,...,]9|} do
ifi =0V j=0 then
Dli, 5] = (i+J) - Cexip
else
Dli—1,7-1 + Clyi1,9;-1]
Dli,j] = min ¢ D[i — 1, j] + Cexip
D[i,j —1] + Cskip
return Dfly|, [9]]

element of the sequence y or of the sequence ¢ and is associated in both cases to
a cost Csiip. An optimal alignment between the sequences corresponds to a path
from the top left position of the grid to the bottom right position (like the one
colored green in Figure 4) which has the minimum cost. Such an optimal path
can be computed through a dynamic programming algorithm, which we detail in
Algorithm 2. We use Cypip = 1.

Training Details All sprite-character matching models have been trained with
a learning rate of 1, a batch size of 256 and for a total of 5 epochs using standard
stochastic gradient descent. In practice we don’t notice major differences after 1
epoch.

T 2 CZ,t
e 8 o
N A

n 3 Cs.e

Fig.4: Sprite-Character Matching. An example of a case of misalignment
due to a transcription error (in red). In this example the optimal place to "skip"
is after sprite 1 as in all the other cases the cost will be higher. With we
denote the best path for which: L (y, 9, Asc) = Cor + C1p + Coxip + Cs e
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(a) Marionette [7] (b) DTI-Sprites [5]

Fig. 5: Baseline Sprites. Left: sprites from MarioNette, for the best model:
n_objects = 4 and layer _size = 2. Right: Sprites from DTI-Sprites, both trained
on Googlel000.

5 Baseline

To construct a baseline for our unsupervised method, we examined two available
sprite-based methods on Google1000: DTI-Sprites [5] and MarioNette [7]. We
train both methods on square crops of 64 x 64 crops from our line images using
the original code provided by the authors with K = 80 sprites. We show the
resulting sprites in Figure 5. MarioNette didn’t produce satisfying sprites, which
demonstrates the changes we propose in our paper are critical. On the contrary,
DTTI-sprite produced good looking sprites and so we applied it repeatedly on line
crops and aggregated the results to produce a baseline for our approach (reported
in Table 1 in the paper).

MarioNette [7]. MarioNette splits the input image into a grid and predicts
sprites and transformations around each position of this grid. Its main hyperpa-
rameter is the layer _size parameter defining the resolution of this grid, which also
implicitly defines the sprite-size as a rectangle with height 2H/layer size (where
2 accounts for the overlap). At each position of the grid we have a maximum
of n_objects layered objects. Finally the background can either be constant
(inferred as the color of the largest class when applying K-means on the color
space) or learned (i.e. a parameter of the overall architecture).

We tune the hyperparameters of MarioNette by trying layer size € {2,4, 8},
n_objects € {3,4} and either a learned or a constant background. Our best
results, obtained with a constant background, n_objects = 4 and layer size = 2



The Learnable Typewriter: A Generative Approach to Text Analysis 9

can be seen in Figure 5a. While we have letter-like sprites, the model is not able
to well-separate background from characters.

DTI-Sprites [5]. DTI-Sprites reconstructs the input canvas by layering a
sequence of sprites in front of a background. We freeze the color of sprites and
use L = 4 layers. As can be seen in Figure 5, the learned sprites are of high
quality, even if a lot of the sprites are duplicates of common letters.

There is no trivial mechanism to extend DTI-sprite to variable-size images.
Moreover, the number of possible layers is strongly limited by the computational
cost of sprite selection which is exponential in the number of layers. To produce
results on complete lines we thus simply concatenate the predictions from crops
across the whole line. In case sprites intersect with the border of two nearby crops
we select the one which has the largest mask inside each crop. We also ignore
any sprite with more than 90% of its total mask overlayed by another sprite.
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